

Ahsanullah University of Science and Technology (AUST)

Department of Computer Science and Engineering

LABORATORY MANUAL

Course No.: CSE 4130
Course Title: Formal Languages and Compilers Lab

For the students of 4th Year, 1st semester of
B.Sc. in Computer Science and Engineering program

TABLE OF CONTENTS

COURSE OUTCOMES .. 1

PREFERRED TOOLS ... 1

TEXT/REFERENCE BOOK .. 1

ADMINISTRATIVE POLICY OF THE LABORATORY ... 1

LIST OF SESSIONS ... #

SESSION 1:
Scanning and Filtering a Source Program. .. 2

SESSION 2:

Lexical Analysis. ... 5

SESSION 3:

Symbol Table Construction and Management ... 9

SESSION 4:

Detecting Simple Syntax Errors. .. 12

SESSION 5:

Use of CFGs for Parsing .. 14

SESSION 6:

Predictive Parsing .. 16

SESSION 7:

Lab Final Examination and Final Assignment Submission .. 19

Page | 1

COURSE OUTCOMES

• Explain the basic elements of formal languages and the fundamental concepts of

processing a source program using techniques like lexical analysis, symbol table

construction and syntax errors detection while parsing.

• Follow conventional techniques to build different modules of the analysis phase of a

compiler.

• Construct a basic parser for C programming language.

PREFFERED TOOL(S)

• Code Blocks
• Visual Studio Code

TEXT/REFERENCE BOOK(S)

• Aho A. V., Lam M. S., Sethi R., Ullman J. D., Compilers: Principles, Techniques and Tools,

Pearson Education, 2nd Edition, 2007.

• Hopcroft J. E., Motwani R., Ullman J. D., Introduction to Automata Theory, Languages,

and Computation, Prentice Hall, 3rd Edition, 2007.

ADMINISTRATIVE POLICY OF THE LABORATORY

• Students must perform class assignments individually without the help of others.

• Viva for lab exercises and assignments will be arranged as an important component

of the assessment procedure.

• Plagiarism is strictly prohibited and will be dealt with strictly.

Page | 2

Session 1: Scanning and Filtering a Source Program

I. OBJECTIVES
To develop a program which can filter comments and white space characters from a
source program.

II. DEMONSTRATION OF USEFUL RESOURCES
Extracting the sequence of occurrences of a specified character from a source program.

Sample Input: datafile1.c

Output of the program: ()()()()()((()))((()()))()()()()((()))()()

datafile1.c

#include <stdio.h>

int main(void)

{

 FILE *p1,*p2; char c;

 p1 = fopen("datafile1.c", "r");

 p2 = fopen("parentheses.txt","w");

 if(!p1) printf("\nFile can't be opened!");

 else {

 while((c = fgetc(p1)) != EOF) {

 if ((c == '(') || (c == ')'))

 fputc(c, p2); } }

 fclose(p1);

 fclose(p2);

 p2 = fopen("parentheses.txt","r");

 while((c=fgetc(p2))!=EOF)

 printf("%c",c);

 fclose(p2);

 return 0;

}

Page | 3

III. LAB EXERCISE

1. Write a program to print the header files used in a source program.

Sample Input: input.c

Sample Output: stdio.h

2. Write a program to add line numbers to a source program.

Sample Input: input.c

Sample Output:

#include <stdio.h>

int main()

{

 // printf() displays the string inside quotation

printf("Hello, World!");

return 0;

}

1: #include <stdio.h>

2: int main()

3: {

4: // printf() displays the string inside quotation

5: printf("Hello, World!");

6: return 0;

7: }

Page | 4

IV. ASSIGNMENT #1:

A C source program with single and multiple line comments is given. As the first step toward

compilation, you need to remove the comments and white space (extra spaces, tabs and newline

characters). Develop a program that takes as input file the given source program and produces

a filtered file as stated above. The program must also display both the files.

Sample Input: input1.c

Sample Output: output.txt

#include<stdio.h>int main(void){printf (“Hello”);printf(“World”);return 0;}

#include<stdio.h>

int main(void)

{

// Single Line Comment

printf ("Hello");

/* Multi

 Line

 Comment

*/

printf("World");

return 0;

}

Page | 5

Session 2: Lexical Analysis

I. OBJECTIVES:
To write a program that reads any simple program as source and separates out the valid

tokens from the source program.

II. DEMONSTRATION OF USEFUL RESOURCES:

DFAs for recognition of tokens: Recognition of keywords using DFA is easier than
recognition of identifiers and numbers.

1. Keyword: The keywords are predefined, reserved words used in programming that

have special meanings to the compiler. To recognize a keyword ‘int’ we can just use

the following DFA:

Regular expression: int

2. Identifier: An identifier in C is a word which starts with a letter or underscore. The

1st character can be followed repeatedly by letters, underscore or digits. No other

character is allowed in the identifier. To recognize a valid C identifier the DFA might

look like the one that follows:

where l stands for a|b|c|…|z|A|B|C|…|Z and d stands for 0|1|2|…|9.

3. Numeric Constant: A DFA for simple floating-point numbers or fixed-point numbers

might take the following form:

Mark that the regular expression is dd*|d*.dd*, where d stands for 0|1|2|…|9, and mark also

that the DFA has two final states.

s q p
i n

r
t

p q

l , _

l, _ , d

p
 s

d

r

.

q
.

d

d

d

Page | 6

4. Sample Implementation of DFA for Numeric Constants

III. LAB EXERCISE:

1. Write a program to recognize whether the entered string is a keyword or not.

2. Write a program to detect whether the entered string is an identifier or not based on

the finite automata described above.

int num_rec(char *lex)
{
 int i, l, s;
 i=0;
 if(isdigit(lex[i])) {
 s=1; i++;
 }
 else
 if(lex[i]=='.') {
 s=2; i++;
 }
 else s=0;

 l=strlen(lex);

if(s==1)
for(;i<l;i++){
 if(isdigit(lex[i]))
 s=1;
 else
 if(lex[i]=='.') {
 s=2; i++; break;
 }
 else {
 s=0; break;
 }
 }

if(s==2)
 if(isdigit(lex[i])) {
 s=3; i++;
 }
 else
 s=0;
if(s==3)
 for(;i<l;i++) {
 if(isdigit(lex[i]))
 s=3;
 else {
 s=0; break;
 }
 }

 if(s==3) s=1;
 return s;
}

Page | 7

Some Useful Library Functions:

Following are the functions defined in the header ctype.h:

S.N. Function & Description

1
intisalnum(int c)
This function check whether the passed character is alphanumeric.

2
intisalpha(int c)
This function check whether the passed character is alphabetic.

3
intisdigit(int c)
This function check whether the passed character is decimal digit.

4
intislower(int c)
This function check whether the passed character is lowercase
letter.

5
intisspace(int c)
This function check whether the passed character is white-space.

6
intisupper(int c)
This function check whether the passed character is uppercase
letter.

The library also contains two conversion functions that also accept and return an "int".

S.N. Function & Description

1
inttolower(int c)
This function convert uppercase letter to lowercase.

2
inttoupper(int c)
This function convert lowercase letter to uppercase.

http://www.tutorialspoint.com/c_standard_library/c_function_isalnum.htm
http://www.tutorialspoint.com/c_standard_library/c_function_isalpha.htm
http://www.tutorialspoint.com/c_standard_library/c_function_isdigit.htm
http://www.tutorialspoint.com/c_standard_library/c_function_islower.htm
http://www.tutorialspoint.com/c_standard_library/c_function_isspace.htm
http://www.tutorialspoint.com/c_standard_library/c_function_isupper.htm
http://www.tutorialspoint.com/c_standard_library/c_function_tolower.htm
http://www.tutorialspoint.com/c_standard_library/c_function_toupper.htm

Page | 8

IV. ASSIGNMENT #2:

Suppose, we have a C source program scanned and filtered as it was done in Session 1.
We now take that modified file as input, and separate the lexemes first. We further
recognize and mark the lexemes as different types of tokens like keywords, identifiers,
operators, separators, parenthesis, numbers, etc.

Sample Input:

char c; int x1, x_2; float y1, y2; x1=5; x_2= 10; y1=2.5+x1*45; y2=100.o5-x_2/3; if(y1<=y2)
c='y'; else c='n';

Step 1: Lexemes are separated. Mark that two-character relational operators are also

distinguished beside separators, one-character operators, parenthesis, number constants

and alphanumeric strings with or without underscore.

Step 2: Lexemes are categorized under the categories kw for keyword, id for identifier, etc.

Some may be labeled unkn (unknown).

*Note that we need to generate an error message for [unkn 100.o5].

char c ; int x1 , x_2 ; float y1 , y2 ; x1 = 5 ; x_2 = 10 ; y1 = 2.5 + x1 * 45 ; y2 = 100.o5 - x_2 / 3 ;

if (y1 <= y2) c = ' y ' ; else c = ' n ' ;

[kw char] [id c] [sep ;] [kw int] [id x1] [sep ,] [id x_2] [sep ;] [kw float] [id y1] [sep ,] [id y2] [sep

;] [id x1] [op =] [num 5] [sep ;] [id x_2] [op =] [num 10] [sep ;] [id y1] [op =] [num 2.5] [op +] [id

x1] [op *] [num 45] [sep ;] [id y2] [op =] [unkn 100.o5] [op -] [id x_2] [op /] [num 3] [sep ;] [kw

if] [par (] [id y1] [op <=] [id y2] [par)] [id c] [op =] [sep '] [id y] [sep '] [sep ;] [kw else] [id c] [op

=] [sep '] [id n] [sep '] [sep ;]

Page | 9

Session 3: Symbol Table Construction and Management

I. OBJECTIVES:
The main purpose of this session is to introduce the symbol table, the table in which all
the identifiers are stored along with information about them. When a variable is declared,
the compiler enters it as a new entry in the symbol table. When a variable is referred to
in an expression, the compiler looks up in the symbol table to retrieve necessary
information about it, such as its data type, value, etc., and the compiler performs other
actions on the table like delete, update and so on.

II. DEMONSTRATION OF USEFUL RESOURCES:
Related sample programs will be demonstrated.

III. LAB EXERCISE:
Sept 1 and Step 2 of the Assignment #3 described below.

IV. ASSIGNMENT #3:

 Suppose, a given C source program has been scanned, filtered and then lexically analyzed
as it was done in Session 1 & 2. We have all the lexemes marked as different types of
tokens like keywords, identifiers, operators, separators, parentheses, numbers, etc. Now
we generate a Symbol Table describing the features of the identifiers. Then, we generate
a modified token stream in accordance with the Symbol Table for processing by the next
phase, that is, Syntax Analysis.

Sample source program:

// A program fragment

float x1 = 3.125;

/* Definition of the

function f1 */

double f1(int x)

{

 double z;

 z = 0.01;

 return z;

}

//* Beginning of 'main'

int main(void)

{

 int n1; double z;

 n1=25; z=f1(n1);

Sample input based on the program fragment:

[kw float] [id x1] [op =] [num 3.125] [sep ;] [kw double] [id f1]

[par (] [kw int] [id x] [par)] [brc {] [kw double] [id z] [sep ;] [id

z] [op =] [num 0.01] [sep ;] [kw return] [id z] [sep ;] [brc }] [kw

int] [id main] [par (] [kw void] [par)] [brc {] [kw int] [id n1]

[sep ;] [kw double] [id z] [sep ;] [id n1] [op =] [num 25] [sep ;]

[id z] [op =] [id f1] [par (] [id n1] [par)] [sep ;]

Page | 10

Step 1: After complete recognition of all the lexemes only identifiers are kept in pairs for

formation of Symbol Tables. The token stream should look like the one as follows:

Step 2: Symbol Table generation:

Sample input based on the program fragment:

[kw float] [id x1] [op =] [num 3.125] [sep ;] [kw double] [id f1] [par (] [kw int] [id x] [par)] [brc {]

[kw double] [id z] [sep ;] [id z] [op =] [num 0.01] [op +] [id x] [op *] [num 5.5] [sep ;] [kw return] [id

z] [sep ;] [brc }] [kwint] [id main] [par (] [kw void] [par)] [brc {] [kw int] [id n1] [sep ;] [kw double]

[id z] [sep ;] [id n1] [op =] [num 25] [sep ;] [id z] [op =] [id f1] [par (] [id n1] [par)] [sep ;]

[float] [id x1] [=] [3.125] [;] [double] [id f1] [(] [int] [id x] [)] [{] [double] [id z] [;] [id z] [=] [0.01]

[;] [return] [id z] [;] [}] [int] [id main] [(] [void] [)] [{] [int] [id n1] [;] [double] [id z] [;] [id n1] [=]

[25] [;] [id z] [=] [id f1] [(] [id n1] [)] [;]

Sl. No. Name Id Type Data Type Scope Value
1 x1 var float global 3.125
2 f1 func double global
3 x var int f1
4 z var double f1 0.01
5 main func int global
6 n1 var int main 25
7 z var double main

Sample source program:

// A program fragment

float x1 = 3.125;

/* Definition of the

function f1 */

double f1(int x)

{

 double z;

 z = 0.01;

 return z;

}

//* Beginning of 'main'

int main(void)

{

 int n1; double z;

 n1=25; z=f1(n1);

Symbol Table:

Page | 11

Step 3: Your program should implement the following functions on symbol table.

1. insert()

2. update()

3. delete()

4. search()
5. display()

Step 4: Modified token stream for Syntax Analysis:

[float] [id 1] [=] [3.125] [;] [double] [id 2] [(] [int] [id 3] [)] [{]

[double] [id 4] [;] [id 4] [=] [0.01] [;] [return] [id 4] [;] [}] [int] [id 5]

[(] [void] [)] [{] [int] [id 6] [;] [double] [id 7] [;] [id 6] [=] [25] [;] [id

7] [=] [id 2] [(] [id 6] [)] [;]

Sample source program:

// A program fragment

float x1 = 3.125;

/* Definition of the

function f1 */

double f1(int x)

{

 double z;

 z = 0.01;

 return z;

}

//* Beginning of 'main'

int main(void)

{

int n1; double z;

 n1=25; z=f1(n1);

Page | 12

Session 4: Detecting Simple Syntax Errors

I. OBJECTIVE:
Syntax errors are very common in source programs. The main purpose of this session is

to write programs to detect and report simple syntax errors.

II. DEMONSTRATION OF USEFUL RESOURCES:
Sample programs will be demonstrated related to syntax error detection.

III. LAB EXERCISE:
Write programs to detect the following syntax errors.

1. Duplicate Identifier Declarations.
2. Unbalanced curly braces Detection.

IV. ASSIGNMENT #4:

Suppose, a given C source program has been scanned, filtered, lexically analyzed and
tokenized as that were done in earlier sessions. In addition, line numbers have been
assigned to the source code lines for generating proper error messages. As the first step
to Syntax Analysis, we now perform detection of simple syntax errors like duplication of
tokens except parentheses or braces, unbalanced braces or parentheses problem,
unmatched ‘else’ problem, etc. Duplicate identifier declarations must also be detected
with the help of the Symbol Table.

/* A program fragment*/

float x1 = 3.125;;;

/* Definition of function f1 */

double f1(float a, int int x)

{if(x<x1)

double z;;

else z = 0.01;}}

else return z;

}

/* Beginning of 'main' */

int main(void)

{{{{

int n1; double z;

n1=25; z=f1(n1);}

1

2

3 kw float id x1 = 3.125 ; ; ;

4

5 double id f1 (float id a , int int id x)

6 { if (id x < id x1)

7 double id z ; ;

8 else id z = 0.01 ; } }

9 else return id z ;

10 }

11

12 int id main (void)

13 { { { {

14 int id n1 ; double id z ;

15 id n1 = 25 ; id z = id f1 (id n1) ; }

16

Sample Input: Sample code segment

with numerous syntax errors.

Intermediate Output: Recognized

tokens in the lines of code.

Page | 13

Sample Output: Types of detected errors

Guidelines:

1. Unbalanced braces or parentheses problem in an arithmetic or relational expression

can be detected during tokenization in a simple way by counting the openings and

closings. Stack can be used here as well.

2. Unmatched ‘else’ problem in its simplest form may also be detected by counting ‘if’s

and ‘else’s: For every ‘else’ there must be an ‘if’ that occurs earlier.

3. Undeclared identifiers and duplicate identifier declarations in the same scope are

detected during Symbol Table construction in a relatively easier way.

4. Duplicate ‘;’ in ‘for’ construct of C demands additional checking. for(;;){}

Duplicate token at line 3, Misplaced ‘}’ at line 8, Unmatched ‘else’ at line 9, etc.

Page | 14

Session 5: Use of CFGs for Parsing

I. OBJECTIVE:
We can think of using CFGs to parse various language constructs in the token streams
freed from simple syntactic and semantic errors, as it is easier to describe the
constructs with CFGs. But CFGs are hard to apply practically. In this session, we
implement a simple recursive descent parser to parse a number of types of statements
after exercising with simpler CFGs. We note that a recursive descent parser can be
constructed from a CFG with reduced left recursion and ambiguity.

II. DEMONSTRATION OF USEFUL RESOURCES:

1. Observe the C code segments that implement the non-terminals of the following CFG.

** Find if there is any logical error in the sample code shown above.

2. A CFG to describe the syntax of simple arithmetic expressions may look like the one

that follows:

void S() {
 if (str[i] == 'b'){
 i++;
 f=1;
 return;
 }
 else {
 A();
 if (f) {
 B();
 return; }
 }}

void A() {
 if (str[i] == 'a') {
 i++;
 f=1;
 }
 else {
 f=0;
 return;
 }
 if (i<l-1)
 A();
}

void B() {
 if (str[i] == 'b') {
 i++;
 f=1;
 return;
 }
 else {
 f=0;
 return;}
}

<Exp>→<Term> + <Term> | <Term> - <Term> | <Term>

<Term>→<Factor> * <Factor> | <Factor> / <Factor> | <Factor>

<Factor>→(<Exp>) | ID | NUM

ID → a|b|c|d|e

NUM→ 0|1|2|…|9

Non-terminal symbols:

<Exp>, <Term>, <Factor>

Terminal symbols:

+, -, *, /, (,), a, b, c, d,e, 0, 1, 2, 3, ..., 9

Start symbol:

<Exp>

Language generated: {b, ab, aab, aaab, …..}
S → b | AB
A →a | aA
B →b

Page | 15

III. LAB EXERCISE:

1. Implement the following CFG in the way shown above.

A → aXd

X → bbX

X → bcX

X →

2. Implement the CFG shown above for generating simple arithmetic expressions.

IV. ASSIGNMENT #5:

Implement the following grammar in C.

 <stat>→<asgn_stat><dscn_stat><loop_stat>

 <asgn_stat>→id = <expn>

 <expn>→<smpl_expn> <extn>

 <extn>→<relop> <smpl_expn> |

 <dcsn_stat>→ if (<expn>) <stat> <extn1>

 <extn1>→ else <stat> |

 <loop_stat>→while (<expn>) <stat>for (<asgn_stat> ; <expn> ; <asgn_stat>) <stat>

 <relop>→ ==!=<=>=><

Note: <smpl_expn> can be implemented using the materials demonstrated in this
session.

Page | 16

Session 6: Predictive Parsing

I. OBJECTIVES:

Manual implementation of LL(1) and LR(1) parsing algorithms.

II. DEMONSTRATION OF USEFUL RESOURCES:

1. Computation of the FIRST and FOLLOW functions as described below.

❖ To Compute FIRST(X) for all grammar symbols X, apply the following rules until no
more terminals or can be added to any FIRST set.
a. If X is a terminal, then FIRST(X) is {X}.
b. If X is a non-terminal and X → Y1Y2 … Yk is a production for some k 1, then place

b in FIRST(X) if for some i, b is in FIRST(Yi), and is in all of FIRST(Y1), …, FIRST(Yi-

1);
that is, Y1, …, Yi-1 derives .

c. If is in FIRST(Yj) for all j = 1, 2, …, k then add to FIRST(X).

Sample input and corresponding output:

❖ To compute FOLLOW(A) for all non-terminals A, apply the following rules until

nothing can be added to any FOLLOW set.

i. Place $ in FOLLOW(S), where S is the start symbol and $ is the right end-marker

of an input.

ii. If there is a production A →B, then everything in FIRST() except is in

FOLLOW(B).

iii. If there is a production A →B, then everything in FOLLOW(A) is in FOLLOW(B).

iv. If there is a production A →B where FIRST() contains , then everything in

FOLLOW(A) is in FOLLOW(B).

E → TE'

E' → +TE' |

T → FT'

T' → *FT' |

F → (E) | id

FIRST(E) = {(, id}
FIRST(T) = {(, id}

FIRST(E') = {+, }

FIRST(T') = {*, }
FIRST(F) = {(, id}

Page | 17

Sample input and corresponding output:

 Table for LL(1) non-recursive predictive parsing with the given grammar:

III. An example of construction of tools for LR(1) parsing

Non-
termina
l

Input symbols

id + * () $

E E → TE' E → TE'

E' E'→+TE' E'→ E'→

T T → FT' T → FT'

T' T'→ T'→ *F T' T'→ T'→

F F →id F → (E)

State
ACTION GOTO

a b $ S A
0 s3 1 2
1 acc
2 s4
3 s3 r3 r3 5
4 s3 6
5 r2 r2
6 r1

E → TE'
E' → +TE' |
T → FT'
T' → *FT' |
F → (E) | id

FOLLOW(E) = {$,)}
FOLLOW(T) = {+, $,)}
FOLLOW(E') = {), $}
FOLLOW(T') = {+,),$}
FOLLOW(F) = {*, +, $,)}

1. S →AbA
2. A →aA
3. A → a

S' → S

S →AbA

A→aA

A → a

A

a

5

0

1

2

3

4 6

accept S
$

A

a

b A

a

FOLLOW(S) = {$}

FOLLOW(A) = {b, $}

FIRST(S) = FIRST(A)

={a}

If A →• is in Ii, then set ACTION(i, a) to “Reduce by A →” for all a in FOLLOW(A).

I3 contains A→a•; I5 contains A →aA•; I6 contains S →AbA•.

Page | 18

IV. LAB EXERCISE:
Perform the tasks1, 2, and 3 of the Assignment #6 which is described below.

V. ASSIGNMENT #6:

Suppose, you are given the following grammar and the input string abcd.

❑ You are required to perform the following tasks manually:

1. Find the FIRST and FOLLOW sets of each of the non-terminals.

2. Construct the predictive parsing table for LL(1) method.

3. Demonstrate the moves of the LL(1) parser on the given input.

4. Construct the LR(0) automaton for the grammar.

5. Construct the parsing table for LR(1) parsing with the grammar.

6. Demonstrate the moves of the LR(1) parser on the given input.

S →aXd

X → YZ

Y → b

Y →

Z →cX

Z →

Page | 19

Session 7: Lab Final Examination and Project Submission

LAB FINAL EXAMINATION

There will be an end-of-semester examination on the materials covered in the sessions conducted

throughout the semester.

FINAL ASSIGNMENT SUBMISSION

Students will develop a basic parser for C programming language and submit as the final

assignment.

END

